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We model a Kohn-Sham potential with the discontinuity at integer particle numbers starting from the
approximation by �GLLB� Gritsenko et al. �Phys. Rev. A 51, 1944 �1995��. We evaluate the Kohn-Sham gap
and the discontinuity to obtain the quasiparticle gap. This allows us to compare the Kohn-Sham gaps to those
obtained by accurate many-body perturbation-theory-based optimized potential methods. In addition, the re-
sulting quasiparticle band gap is compared to experimental gaps. In the GLLB model potential, the exchange-
correlation hole is modeled using a generalized gradient approximation �GGA� energy density and the response
of the hole-to-density variations is evaluated by using the common-denominator approximation and homoge-
neous electron-gas-based assumptions. In our modification, we have chosen the PBEsol potential as the GGA
to model the exchange hole and add a consistent correlation potential. The method is implemented in the GPAW

code, which allows efficient parallelization to study large systems. A fair agreement for Kohn-Sham and the
quasiparticle band gaps with semiconductors and other band gap materials is obtained with a potential which
is as fast as GGA to calculate.
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I. INTRODUCTION

The Kohn-Sham density-functional theory �KS-DFT�
�Refs. 1 and 2� with local and semilocal density approxima-
tions �LDA and GGA� has proven to be successful in pre-
dicting total-energy-related properties of many electron sys-
tems, such as crystal structures, molecular geometries and
cohesion energies. Therefore, these simple approximations
can be used to predict many of the ground-state features of
metals, semiconductors, and dielectrics.

Although there is no direct physical interpretation of the
KS eigenvalues3 the eigenvalue differences can be consid-
ered as zeroth-order approximations to the excitation
energies4 or the eigenvalues itself as vertical ionization
potentials.5 In some cases, the shape of the valence and con-
duction bands also resembles the experimentally measured
ones, except for the band gap. The physical quasiparticle gap
contains, in addition to the KS band gap, the integer deriva-
tive discontinuity of the exchange-correlation �XC�
functional.3,6 As this contribution is positive and not small,
the KS band gap underestimates severely the observed ones
also for potentials believed to be close to the exact
KS-DFT.7–9

The conventional solution to this so called band gap prob-
lem has been an empirical shift, often called as “scissor op-
eration,” to correct the too small band gap.10 Tran and
Blaha11 published a different approach with semilocal model
potential to evaluate band gaps of solids by fitting the poten-
tial, defined with parameters, to increase KS band gap to
reproduce the experimental one. However, due to the
Hohenberg-Kohn theorem,1 there is only one KS potential
which yields the correct density, and it has been shown that
the accurate many-body perturbation-theory-based KS poten-
tial yields a KS gap, which in most cases is only little more
than half of the experimental one.6–8 The previous statements
reflect our point of view, for we will consider these potentials
as best available references and will compare our results ac-
cordingly.

The potential discontinuity at integer particle number is
only an artifact of multiplicative KS potential and the proper
quasiparticle picture such as nonlocal Hartree-Fock or non-
local and energy-dependent GW �Ref. 12� directly yields the
quasiparticle band gap as a one electron energy difference of
highest occupied and lowest unoccupied levels. Thus, there
are different approaches to obtain good quasiparticle band
gaps, KS-DFT with a multiplicative potential and others
which employ nonlocality, either spatial or temporal �energy
dependence�. The evaluation of the discontinuity for a mul-
tiplicative KS potential has been stated necessary and
cumbersome13 but in case of GLLB it is trivial.

A general formalism to obtain the KS potential for a given
�not explicitly density dependent� energy functional is the
optimized effective potential �OEP� method,14,15 where the
total-energy functional is minimized with respect to varia-
tions in a multiplicative XC potential. Correlation contribu-
tions can also be included,16–18 but a common approach is so
called exact-exchange OEP �EXX-OEP� formalism,19 where
the Hartree-Fock exchange energy functional is adopted as
the first-order term of the adiabatic perturbation theory.20

Several approximations have been suggested for solving
the complicated and computationally demanding OEP equa-
tions, such as common denominator approximation based on
so called KLI �Ref. 21� and LHF �Ref. 22� potentials. The
practical calculations for large systems, however, call for
more robust approaches.

In this study we present one such alternative. We start
with the computationally attractive GLLB potential by Grit-
senko et al.,23 which is a further approximation to KLI po-
tential. The model includes the useful properties of the elec-
tron gas as well as a discontinuity on integer particle number.
The GLLB potential is further modified by replacing the
used energy density functional to another, more suitable for
solids and adding correlation. This results in a potential
which we call GLLB-SC �solid, correlation�.

We have implemented our approach along with the GLLB
within the projector augmented wave �PAW� method in the
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real-space grid based GPAW code.24 As a test set we consider
the elemental semiconductors C, Si, and Ge, and compound
semiconductors GaAs and AlAs. Furthermore, we study two
wide gap insulators LiF and Ar. Except for Ge, the test set is
chosen to match the available many-body perturbation-
theory data.6–8 We evaluate both the direct band gaps in
high-symmetry points of the Brillouin zone and the funda-
mental indirect band gap where relevant. In each case the
two contributions to the quasiparticle gap, the KS band gap
and the discontinuity �xc are given. We compare our data to
the experimentally observed and to other calculated results,
where available.

In Sec. II the basic concepts are defined and the Sham-
Schlüter equation is briefly introduced. The GLLB model
potential is introduced in Sec. III and extended to suit better
for solids and band gap materials, in particular. In Sec. IV the
discontinuity of GLLB potential is discussed. Section V
gives some details about implementation to the GPAW code.
Finally, the results are given in Sec. VI and conclusions in
Sec. VII.

II. QUASIPARTICLE BAND GAP

The KS-DFT XC potential of an N-electron system is the
functional derivative of the XC energy as

vxc�r;N� =��Exc�n�
�n�r�

�
N

. �1�

It is continuous with respect to the fractional number of elec-
trons but at integer occupations J a discontinuity may emerge
as

�xc = �xc�r� = vxc�r;J + �� − vxc�r;J − �� , �2�

where the limits �→0 are implied. The discontinuity �xc is a
constant function of r.3

Within the exact DFT, the quasiparticle band gap of an
N-electron system, the difference of the ionization potential
�I� and electron affinity �A�, consists of two contributions3,6

Eg
QP = I − A = E�nN−1� − 2E�nN� + E�nN+1� = Eg

KS + �xc,

�3�

where the first term Eg
KS=�N+1−�N is the KS band gap and

the second term is the derivative discontinuity.
First estimates for the derivative discontinuity on real ma-

terial was given by Godby et al.,9 who solved vxc from the
Sham-Schlüter equation6

0 =� d�� d2� d3GKS�r1,2;�� ,

��xc�2,3;�� − vxc
KS�r2���2 – 3��G�3,r1;�� �4�

by linearization: the interacting Green’s function G and GKS
were both replaced by the GLDA. The resulting potential is
expected to be close to true KS-DFT, thus, leading to the
band gaps equally close. Therefore, we compare GLLB and
GLLB-SC band gaps to those obtained by Godby et al.8,9 for
C, Si, GaAs, and AlAs. Later, Grüning et al.7 evaluated using

similar methods for Si, LiF, and Ar. We refer to all these data
as “True” KS values, later on.

III. GLLB EXCHANGE AND COULOMB CORRELATION

The exchange and correlation energy functional can be
written in terms of coupling constant averaged pair correla-
tion function ḡxc �Refs. 23 and 25� and Coulomb kernel
v�r1 ,r2�= 	r1−r2	−1 as

Exc�n� =
1

2
� dr1� dr2n�r1�n�r2�

�v�r1,r2��ḡxc�n��r1,r2� − 1� , �5�

which leads to the exchange-correlation potential in Eq. �1�
as23,25

vxc�r� = vscr�r� + vresp�r� , �6�

where the two contributions are

vscr�r1� =� dr2n�r2�v�r1,r2��ḡxc�n��r1,r2� − 1� �7�

and

vresp�r1� =
1

2
� dr2� dr3n�r2�n�r3�

�v�r2,r3�
�ḡxc�n��r2,r3�

�n�r1�
. �8�

The screening part vscr�r� is the Coulombic potential of
the XC hole, corresponding to the Slater potential in the
exchange-only case. Thus, it has a smooth and attractive
form. The response part vresp�r� arises from the pair correla-
tion function response to the density variations. It is repul-
sive and short ranged. Next, these two parts will be approxi-
mated with the help of a GGA functional.

In the original GLLB approach23 the B88 exchange func-
tional was used because of the correct asymptotic behavior
�−1 /r� and a parameter fit to atoms.26 Obviously, these are
important features for small finite systems. We choose a
modification of PBE functional27 for solids,28 PBEsol, in-
stead. It is the “state-of-the-art” density functional, to restore
the response properties of local density approximation and
the jellium surface energy. As we deal with the electronic
structures of solids, the choice is natural. PBEsol is a gener-
alized gradient approximation, consequently neglecting the
nonlocal effects such as London dispersion forces.

In the further work,25 the GLLB screening was completed
with a correlation contribution from the energy density of
Perdew and Wang.29 In this work we write for the screening
potential approximation

vscr�r� = 2�xc
�PBEsol��r� , �9�

where �xc
�PBEsol� is the XC energy density.

The exchange response part is the central issue here, and
therefore, it deserves a closer look. First, within the KLI
approximation21 the exchange response potential is written
as
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vresp�r� = 

i

occ

wi

		i�r�	2

n�r�
, �10�

where the coefficients wi are chosen self-consistently as

wi = �i	vx�r� − V̂x
�HF�	i� , �11�

where V̂x
�HF� is the computationally heavy Fock operator.

The corresponding approximate exchange response part
of GLLB was formulated by Gritsenko et al.23 using several
physical arguments: exchange scaling relation, asymptotic
behavior and fit to the homogeneous electron gas �HEG�.
This was carried out by formulation of a simple expression
for the orbital dependent function wi, Eq. �11�, which only
depends on KS eigenvalues.

Shift of the external potential by a constant should not
have any physical effect, and thus, the function should de-
pend on the differences of the eigenvalues, only. Therefore,
the highest occupied eigenvalue �H is taken as a reference �r
and we choose

wi = f��r − �i� �12�

with the condition that f�0�=0, as wH should vanish.21

Furthermore, the exchange potential has the following
scaling property:

vx�n
��r� = 
vx�n��
r� , �13�

where n
=
3n�
r� while the eigenvalues scale as

�i�n
� = 
2�i�n�r�� . �14�

These imply that the function f should scale as

f�
2��r − �i�� = 
f��r − �i� , �15�

which is satisfied by the form

wi = Kx

�r − �i. �16�

The response potential of the HEG is known and it is

vresp =
kF

2�
, �17�

where the Fermi wave vector is kF= �3�2n�1/3. The corre-
sponding response potential in this approach is

vresp
HEG =

V

8�3�
	k	�kF

dkKx

�r − �k, �18�

where the difference �r−�k for the electron gas can be writ-
ten as

�r − �k = �kF
2 /2 + vKS� − �k2/2 + vKS� . �19�

Setting the right-hand sides of Eqs. �17� and �18� equal,
evaluation of the integral yields the electron gas fitted pref-
actor

Kx =
8
2

3�2 � 0.382. �20�

Gritsenko et al.25 use this same functional form also for
the correlation contribution in the response part and just fit

the relevant prefactor Kc, accordingly. We choose to use the
GGA, again, and the same PBEsol as before, consistently. As
vc=vc,scr+vc,resp, we simply write

vc,resp
PBEsol�r� = vc

PBEsol�r� − 2�c
PBEsol�r� . �21�

Thus, the total GLLB-SC potential can be finally written
as

vGLLB−SC�r� = 2�xc
PBEsol�r� + 


i

occ

Kx

�r − �i

		i�r�	2

n�r�

+ vc,resp
PBEsol�r� . �22�

In summary, the above formulation is an orbital-
dependent robust simplification of the KLI approximation21

to the EXX-OEP �Ref. 19� following the guidelines of GLLB
�Refs. 23 and 25� for the exchange. For correlation, our for-
mulation adds PBEsol correlation,28 which is consistent with
the exchange screening part.

IV. DISCONTINUITY IN GLLB+SC

In this section, we discuss the discontinuity and its origin
in response potential. For our GLLB-SC has only exchange
discontinuity, the expression for the discontinuity is identical
with that of GLLB. In both the potential is not a direct func-
tional derivative of any XC energy functional, similarly to
KLI �Ref. 21� and LHF �Ref. 22� approximations. However,
due to the similar orbital dependence all these potentials ex-
hibit the discontinuity on addition of an electron. In GLLB
exchange response approximation, the discontinuity comes
with the coefficients wi in Eq. �12� from their straightforward
dependence on the highest occupied electron state.

The reference energy �r for particle number N close to
integer occupation J can be written as

�r = � �J N 
 J

�J+1 N � J
� �23�

for when the occupation exceeds J, what was formerly low-
est unoccupied molecular orbital becomes now the highest
occupied. For the difference of the above and below limits of
vx�r� as N→J, i.e., the discontinuity, one obtains straightfor-
wardly

�x,resp�r� = 

i

N

Kx�
�N+1 − �i − 
�N − �i�
		i�r�	2

n�r�
. �24�

As the above approximation is not a constant, but depends
on the space coordinate, the wave functions would be af-
fected. Therefore, to compare with our approach the first-
order perturbation theory expression leading to the constant
discontinuity should be evaluated as

�x,resp = ��N+1	�x,resp
GLLB	�N+1� . �25�

By analyzing the term in Eq. �24� for different summation
indices more closely, we note that it vanishes for �i→−�.
Thus, the dominant contribution from this expression is from
neighborhood of the Fermi energy as one would expect.

In addition, we wish to revise a connection between the
Sham-Schlüter equation and several approximations to the
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response potential such as in KLI or in GLLB. Using similar
arguments as those in derivation of KLI, to simplify the
Sham-Schlüter equation, Eq. �4�, after cumbersome algebra
Casida found an approximative solution to vxc�r� in terms of
the self-energy17

vxc�r� = 

i

N
Re�	i�r��̂xc��i�	i�r��

n�r�

+ 

i

N �	i	vxc − �̂xc��i�		i�		i�r�	2

n�r�
, �26�

where the latter term is equivalent of the response part of
KLI, if �xc��x= iGDFTv, i.e., the x-only self-energy in
OEP-EXX formalism, where v is the bare coulomb interac-
tion. By relating Eqs. �11� and �16�, the response potential of
GLLB, and ours, turns out to be an approximation to the
matrix element in Eq. �26� as

��i	vx − �̂x��i�	�i� � Kx

�r − �i. �27�

V. IMPLEMENTATION

We have implemented the GLLB and GLLB-SC poten-
tials to the grid-based projector augmented wave method
code GPAW.24 It is a pseudopotential free approach, which
allows more accurate and controlled description of electronic
structure than the conventional pseudopotential approxima-
tions. For PAW core electrons the frozen-core approximation
is used.

The PAW method30,31 is based on a linear transformation,
which connects smooth wave functions �represented in
coarse Cartesian grid in GPAW� to the accurate all-electron
functions �represented using partial wave set within each
augmentation sphere in GPAW�. The transformation and the
resulting one-particle equation are

T̂�̃�r� = ��r� , �28�

T̂†ĤT̂�̃�r� = ET̂†T̂�̃�r� . �29�

Details of the transformation are given elsewhere.24 Nor-
mal approach for deriving the PAW potential would to take
the derivative of the total energy expression but since GLLB
or GLLB-SC have no such expression we form the potential
analogously by hand. The PAW potential consists of a
smooth part, which can be chosen, “in principle,” freely in-
side the augmentation sphere. To obtain sufficiently smooth
potential, we choose the expression

ṽGLLB−SC�r� = 2�x
PBEsol�ñ�r�, 	�ñ�r�	2��r�

+ 

i

val.

KG

�r − �i

		̃i�r�	2


i

val.
		̃i�r�	2

+ vc
PBEsol�ñ�r�, 	�ñ�r�	2��r� ,

which is clearly identical to all-electron GLLB-SC potential
outside and smooth inside the augmentation spheres. The

GLLB potential is obtained similarly by replacing �x
PBEsol by

�x
B88 and omitting the correlation potential.

The smooth potential requires augmentation sphere cor-
rections to obtain full-potential description and we calculate
the total PAW Hamiltonian as

v̂xc = ṽxc�r� + 

a

atoms



ij

	p̃i
a����i

a	vxc
a �r�	� j

a� − ��̃i
a	ṽxc

a �r�	�̃ j
a��

��p̃j
a	 , �30�

where the spherical corrections are performed on a radial
logarithmic grid and the smooth part on a sparse real-space
grid. The �̃i are the partial wave expansions used to generate
pseudodensity within augmentation sphere and �i are corre-
sponding all-electron partial waves. The partial waves �̃i

a

and projectors p̃j
a are chosen biorthogonal, thus on infinite

basis set limit 
i	p̃i
a���i

a	 and it’s conjugate are identity op-
erators within the augmentation sphere. The quantities vxc

a

and ṽxc
a are the radial all-electron xc potential and radial

smooth xc potential correspondingly. They are constructed
and integrated in 50 radial slices corresponding to Lebedev
points in a unit sphere.

For core states, we use the response potential calculated
for single atom. In addition, for calculating the discontinuity,
we neglect the shift caused by the core states. This is justified
for core states, for their contribution is small due to reasons
described in Sec. IV.

Calculation of the potential scales as O�N2� with a small
prefactor due to construction of the response potential, i.e.,
such as evaluation of the density from KS orbitals. Thus, the
computation scales similarly as the normal local density
functional potentials with a slightly larger prefactor arising
mostly due to a larger number ��1.5�� of self-consistent-
field iterations. In case of a general model potential, this
issue is discussed further in Ref. 32.

VI. RESULTS AND DISCUSSION

To ensure convergence with respect to numerical param-
eters in calculations, a real space grid with about 0.11 Å
spacing was used for the wave functions. We also used 17
�17�17 k points in the first Brillouin zone corresponding
to the two atom unit cell to find the conduction-band mini-
mum �CBM� state required for calculation of the discontinu-
ity accurately. Note, that this is more than what is needed for
convergence in the self-consistent electronic structure. Con-
sequently, sufficient numerical accuracy in the obtained KS
potential and �x,resp

GLLB is guaranteed. Using these, the single-
point band-structure calculations were performed using k
points in high-symmetry points and directions in the first
Brillouin zone.

Smooth and all-electron partial waves and the
pseudoprojector functions were generated on default values
provided with the GPAW code.24 The frozen-core approxima-
tion was used. In case of Ga the 3d electrons were included
into the frozen core to retain comparability to some earlier
pseudopotential calculations but relaxation of the 3d elec-
trons was tested and found to have only a minor effect on the
band gap.
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We do not have the total-energy functional to minimize in
our approach for finding the crystal lattice constants of our
test set semiconductor compounds, consistently. Therefore,
we first consider the evaluated fundamental �minimum� band
gaps as a function of the lattice constant in the range of
LDA, GGA, and experimental gaps, shown in Fig. 1. The
possible structural changes due to stress are not taken into
account. Note, that our primary intention is not to evaluate
band gap for materials under stress but to acknowledge the
fact that the lattice constant has a large effect to the band
gap. Therefore the band gap predicted using relaxed lattice
constant depends not only on the XC potential but also on
the energetic properties of XC functional �i.e., on the relaxed
lattice constant itself�.

Also, for comparison the LDA, PBEsol and experimental
band gap lattice constant data is given. There, the usual ten-
dency of LDA underestimating and GGA overestimating the
experimentally found lattice constants is clearly seen. The
PBEsol is seen to find a lattice constant in between these

two, and in average, closest to the experimental one. As
GLLB-SC is based on PBEsol, it can be suggested to be used
for evaluation of the lattice constants and other energetics for
GLLB-SC, where relevant.

From our GLLB-SC approach the KS contribution and the
total quasiparticle band gaps are shown. Lattice constant de-
pendence is seen to be weak for C and Si but stronger for
compound semiconductors and Ge. For GaAs and Ge the
lattice constant dependence is strongest and match with ex-
perimental gaps is less good. The gap opens strongly with
decreasing lattice constant. The success with Ge should be
noticed, in particular, as the LDA and GGA do not open the
gap, at all. The other cases show a good match with the
experimental band gap in a large range of lattice constants.

From now on we restrict our analysis and discussion to
the calculated band gaps using the following experimental
lattice constants: C�3.567�,33 Si�5.431�,33 Ge�5.658�,33

GaAs�5.653�,33 AlAs�5.661�,34 LiF�4.024�,35 and
Ar�5.260�,36 all in Å.

In Table I we list our calculated KS band gaps for LDA,
GLLB, and GLLB-SC. These are to be compared with the
band gap values obtained with potential from linearized
Sham-Schlüter equations. Both GLLB and GLLB-SC yield
KS band gaps close to these values. Comparing GLLB-SC
and GLLB, GLLB-SC shifts the band gaps to the right direc-
tion with all materials except for Ar. Furthermore, we note
that the obtained band gaps are much closer to expected KS
values than the approach by Tran and Blaha11 due to their
choice of the fitting objective.

Furthermore, In Table I we list the calculated quasiparticle
band gaps with added discontinuity using GLLB and
GLLB-SC potentials. The GLLB and GLLB-SC use an elec-
tron gas based response potential resulting in a discontinuity
which gives good quasiparticle band gaps to be compared
with the GW and experimental results. We find this to be a
remarkable result considering the fact that the quasiparticle
band gaps evaluated from OEP-EXX potential are disas-
trously overestimated.19

In Fig. 2 we extend our analysis to all of the calculated
direct KS band gaps of our test case semiconductors at the
special symmetry points in the Brillouin zone. The disconti-
nuities are shown as an additional bar on top. It should be
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FIG. 1. �Color online� Fundamental, i.e., minimum, band gap �in
eV� of five semiconductors as a function of the lattice constant. The
KS gap �dashed curve� and the quasiparticle gaps �solid curve� from
our GLLB-SC are shown. The LDA �square�, PBE �plus�, and
PBEsol �circle� data are shown for their minimum energy lattice
constants, respectively. Similarly, the experimental data is denoted
by the star. For references, see Table I.

TABLE I. �a� The minimum KS band gaps/the fundamental band gap with discontinuity from GLLB
exchange only and GLLB-SC calculations using the experimental lattice constants given in the text. �b� The
KS-band gap based on Sham-Schlüter GW self-energy/GW quasiparticle band gap �Refs. 7 and 8�. �c�
Experimental values for C, Si, AlAs, and GaAs from Ref. 8 and references there in. For Ge we used 0 K
value from Ref. 32. LiF and Ar values from Ref. 7. �d� Effect of spin-orbit splitting removed �see Ref. 8 for
details�. All units in eV.

Compound LDA GLLB �a� GLLB-SC �a� KS/GW �b� Expt. �c�

C 4.09 4.36/5.70 4.14/5.41 4.21/5.33 5.48

Si 0.44 0.77/1.13 0.68/1.00 0.66/1.24 1.17

Ge 0.00 0.00/0.00 0.21/0.27 NA 0.74

AlAs 1.34 1.83/2.72 1.67/2.49 1.55/2.18 2.32 �d�
GaAs 0.36 0.53/0.69 0.79/1.04 0.91/1.58 1.63 �d�
LiF 8.78 11.20/15.38 10.87/14.96 9.3/13.5 14.2

Ar 8.18 9.9/14.46 10.3/14.97 8.8/13.1 14.2
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noted that Kohn-Sham DFT with added discontinuity guar-
antees only the fundamental band gap to be correct, for it is
the only quantity which is a ground-state property in the
band structure. However, we approximate also other band
gaps by adding the calculated discontinuity also to them as
shown in Fig. 2. Good match with the experiments is again
seen, except for GaAs, as in Fig. 1 for the fundamental band
gaps.

Next, we analyze the Kohn-Sham contribution to the band
structure. First in Table II, we compare the KS band gaps of
highest symmetry points of the first Brillouin zone for Si,
LiF, and Ar crystals. LDA gives systematically the lowest
gaps underestimating the true KS gaps while GLLB ex-
change only or GLLB-SC make a slight overestimation.
However, the variation is small, and thus, not essential. The
inaccuracy for comparing our projector augmented wave ap-
proach and the pseudopotential approach used for KS gaps is
probably larger than the differences in band gaps.

Finally, we evaluate the Kohn-Sham band structures of
the test compounds to analyze also the dispersion around

valence and conduction bands. In Figs. 3 and 4 we compare
LDA, GLLB, and GLLB-SC approaches. The constant dis-
continuity is removed for clarity.

Overlap of the bands from these approaches is close to
perfect in the valence bands and below. There are no signifi-
cant differences in the dispersion at the CBM or above, ei-
ther. The small differences in the KS gap, see Table II, make
a just rigid shift of the bands, only. This behavior seems to be
similar in all considered cases.

We argue, that the full potential of model potentials is
currently not used based on our positive experience for
simple KS-eigenvalue-dependent GLLB exchange response
potential for predicting the derivative discontinuity of the
exchange-correlation energy functional. There are various lo-
cal and global quantities which are fast to evaluate and could
be used to construct a mapping between them and electron
gas based expressions for potential. These include quantities
such as the eigenvalues �or some other expectation values�,
wave functions and their gradients, etc. The simplest ap-
proach would be to make the response potential exact at
electron gas limit by fitting the function f in Eq. �12� to vc,resp
for electron gas. For the first hint, we related the GLLB
response potential to the Casida’s approximation to the
Sham-Schlüter equation.
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FIG. 2. �Color online� Kohn-Sham band gap �three leftmost,
green� and the discontinuity �on top� contribution to the quasiparti-
cle �total� gap from our LDA, GLLB exchange only, and GLLB-SC
calculations. The True DFT KS gaps �rightmost, yellow� with the
discontinuity from GW �top, red� are shown for comparison.

TABLE II. Kohn-Sham band gaps of high-symmetry points with respect to � point for Si, LiF, and Ar.

Comp. Gap LDAa GLLBa GLLB-SCa Trueb LDAb

Si �→� 2.53 2.71 2.72 2.6 2.6

�→X 0.58 0.91 0.81 0.6 0.7

�→L 1.47 1.88 1.88 1.5 1.5

LiF �→� 8.78 11.2 10.9 9.3 8.9

�→X 14.4 17.1 16.8 15.3 14.8

�→L 10.3 13.4 13.1 11.1 10.6

Ar �→� 8.18 9.9 10.3 8.8 8.2

�→X 10.9 12.3 12.7 11.4 10.6

�→L 11.1 12.5 12.8 11.5 11.0

aThis work calculated using GPAW code �Ref. 24�.
bEXX-RPA and LDA gaps calculated by Grüning et al. �Ref. 7�. All units in eV.
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FIG. 3. �Color online� Calculated Kohn-Sham band structures
�without discontinuity� of compounds Si, GaAs, and AlAs using
LDA, GLLB, and GLLB-SC approaches.
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VII. CONCLUSIONS

We have demonstrated how the derivative discontinuity at
the integer occupation numbers can be included into a simple
semilocal orbital-dependent exchange-correlation potential.
Our approach, GLLB-SC, is based on the GLLB-type ex-
change of Gritsenko et al.23 and PBEsol correlation,28 where

the former is responsible for bringing in the discontinuity in
its “response part.”

We have analyzed the roles of the two parts to the evalu-
ated total quasiparticle band gap: Kohn-Sham gap and the
discontinuity contribution. Both GLLB and GLLB-SC poten-
tials contain only discontinuous exchange potential but nev-
ertheless the agreement with experimental results is remark-
able compared to computationally more expensive EXX
approach, where the quasiparticle band gap is essentially
same than the Hartree-Fock band gap.

The evaluated fundamental band gaps for our test set,
typical semiconductors and dielectrics, match surprisingly
well to the experimental data and to those from more sophis-
ticated approaches. However, the computational efforts
needed for GLLB-SC are about the same as for a typical
GGA calculation, only. In short, we have demonstrated a
computational approach to solve the “band gap problem” of
semiconductors and shown that it gives close to correct band
gaps.
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